★ 当前位置:首页 - 中小学教案精选 - 数学教案/高二 - 正文

研究性课题与实习作业:线性规划的实际应用(2)

[]
来源: 2004-1-20 11:35:10

1.物调运问题
例如,已知 两煤矿每年的产量,煤需经 两个车站运往外地, 两个车站的运输能力是有限的,且已知 两煤矿运往 两个车站的运输价格,煤矿应怎样编制调运方案,能使总运费最小?
2.产品安排问题
例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,能使每月获得的总利润最大?
3.下料问题
例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?
4.研究一个例子
下面的问题,能否用线性规划求解?如能,请同学们解出来。
某家具厂有方木料 ,五合板 ,准备加工成书桌和书橱出售,已知生产每张书桌需要方木料 、五合板 ,生产每个书橱需要方木料 、五合板 ,出售一张书桌可获利润80元,出售一个书橱可获利润120元,如果只安排生产书桌,可获利润多少?如何只安排生产书橱,可获利润多少?怎样安排生产时可使所得利润最大?
A.教师指导同学们逐步解答:
(1)先将已知数据列成下表
(2)设生产书桌x张,生产书橱y张,获利润为z元。
分析:显然这是一个二元线性问题,可归结于线性规划问题,并可用图解法求解。
(3)目标函数
①在第一个问题中,即只生产书桌,则 ,约束条件为
∴ 最多生产300张书桌,获利润 元
这样安排生产,五合板先用光,方木料只用了 ,还有 没派上用场。
②在第二个问题中,即只生产书橱,则 ,约束条件是
∴ 最多生产600张书橱,获利润 元
这样安排生产,五合板也全用光,方木料用去了 ,仍有 没派上用场,获利润比只生产书桌多了48000元。
③在第三个问题中,即怎样安排生产,可获利润最大?
,约束条件为
对此,我们用图解法求解,
先作出可行域,如图阴影部分。
时得直线 与 平行的直线 过可行域内的点M(0,600)。因为与 平等的过可行域内的点的所有直线中, 距原点最远,所以最优解为 ,即此时
因此,只生产书橱600张可获得最大利润,最大利润是72000元。
B.讨论
为什么会出现只生产书橱,可获最大利润的情形呢?第一,书橱比书桌价格高,因此应该尽可能多生产书橱;第二,生产一张书橱只需要五合板 ,生产一张书桌却需要五合板 ,按家具厂五合板的存有量 ,可生产书橱600张,若同时又生产书桌,则生产一张书桌就要减少两张书橱,显然这不合算;第三,生产书橱的另种材料,即方木料是足够供应的,家具厂方木料存有量为 ,而生产600张书橱只需要方木料 。
这是一个特殊的线性规划问题,再来研究它的解法。
C.改变这个例子的个别条件,再来研究它的解法。
将这个例子中方木料存有量改为 ,其他条件不变,则
作出可行域,如图阴影部分,且过可行域内点M(100,400)而平行于 的直线 离原点的距离最大,所以最优解为(100,400),这时 (元)。
故生产书桌100、书橱400张,可获最大利润56000元。
总结、扩展
1.线性规划问题的数字模型。
2.线性规划在两类问题中的应用
布置作业
到附近的工厂、乡镇企业、商店、学校等作调查研究,了解线性规划在实际中的应用,或提出能用线性规划的知识提高生产效率的实际问题,并作出解答。把实习和研究活动的成果写成实习报告、研究报告或小论文,并互相交流。
探究活动
如何确定水电站的位置
小河同侧有两个村庄A,B,两村庄计划于河上共建一水电站发电供两村使用.已知 A,B两村到河边的垂直距离分别为
?